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Swbsonic flutter calculations on the basis of a variety of aero-
dynamic thecries are presented for nine model wizga. The aerodynamic theories
euployed include two-dimensiomsl strip theory, two variants of a procedure
suggested by Wasserman (Ref. 1), the single-1i%ting-line theory, and the
double-1ifting-line theory. All save the first imclude corrections for the
effects of finite span.

Experimental flutter speed and frequency data are available for all
nine vings. The wings are of the uniform variety, have moderate to large
aspect ratios, and range ir sweepback from 0® to 45°. Both semi-rigid snd
elastic cantilever ving models are included.

A compsrisca of the calculated and experimental fiuttier speeds leads
to the conclusion that two-dimensional strip thecry should presently be used
in the design office for the fiutter amalysis of unswept, or slightly swept
vings. Por sharply svept wings, the studies iniizate that the single-lifting-
line theary holds most promise for accurate flutier speed prediction. None
of the theories appear to predict the flutier freguencies with satisfsctory
consistency.

In sdditicn to s description of the mumerous flutter caleulsations,
the repxrt contains an outlize of the slagle-and double-1ifting-line theories,
and of tts Wasserman method. The former two serodynamic treatments were
developed during the course of the present progres and are efforts to devige
a ratiomal, finite span theory for the oecillating wing.
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see Bg. (2.11).

aspect ratio of ving model plus image.

integrals related tc the incomplete Clcala
_ function. See Zg. (II.12)..

local wing semi-chord, measured parallel to diree-
tion of flow. Also used in s general discussion
in Appendix II to designate efther B; or by,

see Eq. (II.9).

= wing semi-chord st reference station.

= gpanvise variatiom of the wing pitching amplitude
and plunging smplitude at the forwvard quarter-
chord line, respectively.

= see Bq. (2.38) .

= Theodorsen circulation function.

= wing 1ift coefficlent slope.

= see Bq. {(I11.10) .

= distance elastic axis lies to the resr of the
quarter-chord divided by semi-chord.

= guperscript employed with notation for downwash to
designete that downwash is effective.

= real and imsginary parts of circalstios function,
respectively. A subscript 3 refers to three-
dimensiona) flow.

= the complete Cicala function, see Bgs. {II.5, 11).

The real and imsginary parts are notated ’R and
rl,reqaecthely.
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g = superscript employed with notation for uowmmsh
to desigmate that dowmwash is geometric. Also
used in place of g or .

8, & = see Bg. (I1.9).

8(1:), (q) = dsmping factor is wing bending and torsion mode,

€ respectively,

G(u) = see Bq. (2.37).

c(v) = see Bq. (II.11),

'0(2)’ 11(2) = Banke]l functions of second kind and order zero and
one, respectively,

Bk ) = see Eq. (II.6).

I = ving mass moment of inertia per unit spez about
elastic axis.

i = jsaginary unit,

k = reduced frequency = wb/fV,

3 = see Bg. (I1.9),

|} = Mach No.

I"-e/h = wing 1ift and nose-up moment about the forward
quarter-chord point, each per unit span,
respectively.

n = mass of ving per unit spen.

n = letter used to designate mumber of horseshoe vortices,

n=a(k); Mk,vgs)/ié‘)) = bound varticity correction factor used in single-
1ifting-line and double-11fting-line theary,
respectively.

Py B» Per Pl: T’o’ -il = see Eq. (2.7), (2.9) and {2.10).

P, qQ = gubscripts and superscripts used to denote items
relating to ving bending and wing torsion degrees
of freedom.
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= gubseript deslignating & vortex.

- see Bg. {11.2).

= wing sexi-span measured norml to direction of
flow. Also s wblcri*ptamtinaapointatma
dourssush 18 satisfied.

= ving mss static usbalance per unit spen, positive
if center of gravity 1ies sft of the elsstic
axis.

= time coordimste.
= see Bq. (n.g).

= main stream velocity,

= experizental and calculated fiztter speed, respec-
tively.

sunscpeedcomcuémrlhchic. and used in V-g

diagrans.
= experimenial and calculsted reduced flutter veloelity,
respectively. :

= aerodypmxic inflnence coefficient relating the
intensity of the rﬂmﬁuw the dowmmsh st
the o dovnvash ssiisfaction point. Por precise

vl(,in, Vv “(12), etc., see p- 20.

definitions of V te

= effective gnd geometric Soncmponsh , resphetively.
= finite aspect ratio infduetion dovnwash.

= effective downwvash at resr quarter-chord point sxd
mid-chord point, respectively.

= geometric dovnwash at mid-chord poirt snd rear quarter-
chord point, respectively.

= geometric and theoreticsl downvash of the ving at
point s, respectively.
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= downessh velocities due to ), wake only at mid-
chard and resr quarter-chord, respectively. A
superscript e or g mesns that dowrnmah is
effective or geometric, respectively.

= dowomash influence coefficlent relating the istensity
od’tbrﬁmtgxtotumhatthesgm-
wash satisfaction point.

= geometric dovmwash of wing st 1/2 chord line sad
3/ chard line, respectively, each at station s.

= induced downwesh on the wing at the root.

= induced dovnvash at root arising from intensity
[ of horseshoe vortex,

= gee k. (H.l) .
= resrmrd coordinpate in the giream direction.

= non-disensional rearvard ecoordinate with origis
st mid-chord.

= distance the point s lies behind the vortex l'r
(in the stream direction).

= sparwise coordinate, positive to the right.

= distance the point s lies to the right of the
mid-span of vortex r'r.

= dovnsesh displacement of the wing.
= ving angle of attack.
= Bulerian constant (see Appendix II).

= circulstion at a spanviee station assuming three-
dimencional and two-dimscsional flow, respectively.

= two-dimensional circulstion at reference station.

= spanvise distribution of the bound vorticity.
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ﬁ, ra = intensities of discrete vortices J; amd ¥, ,
respectively, used in two-lifting-line theory,
eg. 1= v,

Tel®t = intensity of bound vorticity of r*P vortex,

3 = distance from the bound vortex mid-span rearvard
to the ving trailing edge divided by the loeal
senl-chord.

7 = gemi-span of a horseshoe vortex.

)
l = dummy wvarisbie of integration.
/l(k) s see Bg. (2.36).
; W = circular freguency of wing osciliation.
4
a Wors "")t.h = experimental and calculated flutter frequency,
}l respectively.
W, u)q = circular freguency of wing bending and torsion
. mode, respectively.
ki
. II(x) = chordwise pressure distribution.
Y - p-) = mass eir demsity.
8,0 = a parameter defined by X = -cos 6. Also a phase angle,
|
: E = yrearvard coordinmate denoting distance from quarter-
chord. Also used to denote distance behind the
trailing edge.
S §1,§2 = location of diserete vortices Y3, Y, used in two-
. lifting-line theory.

€. € = rearvard coordinates with origins st discrete
vortices X, and Y, , respectively.

% = see Bq. (I1.5).

!
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INTRODUCTION

1. As its origiml objective, this program aimed toward an evalua-
tion of the accurscy of a method proposed by L. S. Wassersan for accounting
for finite agpect-ratio effects in flutter calculations. BHowever, as the pro-
graa progressed, certain original aerodynamic contributions were made by the
authors, in the form of one-1ifting-line and two-lifting-line theories for
caleunlation of the loeding of oscillating airfoils, and this work was incor-
porated in the over-sll scope of the project.

This repart describes the application of these serodynamic theories
to nine wing flutter models, for which experimental flutter data esre available
for comparison with the theoretical predictions. Because of the progras history,
all nine wings wvere not analyzed by all the theorles; however, sufficient cal-
culations were performed to permit preliminary appeisal of the accuracies of
the various proposed design techniques.

2. The nine wings selected for anslysis all wvere to flutter in a
fundsmental wing bending - fundamental wing torsion mode, and none of the models
were equipped with control surfaces. The reasons for this selection are evident:
To begin vith, additional refinements must be introduced ir the serodynamic
analysis to permit treatment of wings with discontinucus casber, as are intro-
duced by conventiomal comtrol surfaces. Although the direction of such refine-
ments is knovn, the additional increase in computational complexity is hardly
varranted for this preliminary appraisal of the theories.

Secondly, the comparison of calculated and measured flutter speeds
can be used as an index of the excellence of a particular serodymmic theory
only if the elastic, inertia, and dsmping properties of the wings are known vith
considerable accuracy. Least difficulties in these phases of the calculation
are encountered vhen fundamerital bending - fundamental torsion flutter modes sre
employed. In this connection, care vas exercised to insure that the higher ving
bending and torsion modes were well separsted from the fundamental pair; for
virg Bc. 9, however, this requirement was not met, the ving being tested after
the ealculations were started.

3. Io the later sections of the report, a description of the Midwest
Besesrch Institute serodymaxic theories is given. An outline of the Wasserman
method, essentially following his original presentation (see Ref. 1), is also
incloded as Appendix I. The various fiutter amalyses are then described in
detail, and preliminary design conclusioss and recommendations are drawn.

WADC T8 5h-29 -1-




As an additional aid in appraising the merits of the finite.span
theories, flutter calculations were alsc performed by conventionsl "strip”
theary, employing the two-dimensional eir forces, as described in Befs. 2 and
13. Coaclusions are presented regarding the sultability of using two-dimensiooal
strip theory analyses in practice.

I. METNODS POR CALCULATION OF THE ARSODYNAMIC
LOADING O OSCILLATTNG AIRFOILS BY
LIFFING-LIR

A. Single-Lifting-Line Model

1. The thearetical basis for the single lifting-line technique for
calculating the serodymsxic loading on an oscillating airfoll is descrided in
detail in a recent research paper (see Ref. k). In essence, the ressoning is
based on extension to the cecillatory case of the ideas employed by Weissinger
vhen amalyzing stesdy-state wing losding.

dne principal elements of the theory are as follows:

a) It is assumed that the chordwise pressure distributios at esch
' wing station remains essentially the same as that encountered in two-dimensiomsl
flov. TBms, the local center-of-pressure iz at the forwrd quarter-chord point
of each ving statiom.

b) 7o calculate the spamwise distribution of wing circulstion, the
actual wing 1s first replaced by a concentrated line vortex vhich reus along
the farwrd quarter-—chord line of the wing. For a ving station where the actual

bound circulation 1s 1 e1t and the local reduced frequency ts k , the line

vortex 1s arbitrarily sssigned an intensity nel(3/2)k [Tg1dt

Bere nel(3/2)X 15 o factor which comses the circulstiom prediction
from the present single-1lifting-line theory to correspond precisely with that
from the exact, Theodorsen theory for the cecillating wing of infizite aspect
ratio. The factor n = n{k) is a function of the local reduced frequency ouly,
and is given in tabular end plot form in Table I and Fig. 1, respectively. -

¢) With the bound vorticity sccountes for, it is now mecessary to
construct the associated wake. This is done in the following feskion: The weke
mxw.tammmmmmmmnmedmmmqtmm,
surface-loading theory for an oscillating airfoll (see, for example, Refs. 5, €).
m:finlthehkeinteuityltuchpointbehhﬂtbemﬂinceboflmo
lar station, and located a distance § from the local quarter-chord of the sta-
tion.

WADC 1R 54-29 -2-




TAEIR I

VALIES OF THE PUNCTION n(k) IR VARIOUS k
{SINGLE-LIFTTNG-LINE TWEORY)

a) = 2w [ - #D)] + e [10/2 + 13100 + c1(x)]

X n(k)
0 1.0
0.05 0.9995 + 0.00961
0.10 0.9980 + 0.01911
0.15 06.9951 + 0.02844
0.20 0.9905 + 0.03761
0.30 0.9T71 + 0.056k1
0.h0 0.955% + 0.0TT24
. 0.50 0.9250 + 0.10241
0.60 0.8854 + 0.23501
0.80 0.7816 + 0.23581
. 1.00 06579 + 0.4O734
HADC TH 54.29 -3-
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TABLE 1

VALUES OF THE PUNCTION n(k} POR VARIOUS k
{ SINCLE-LIPYING-LINE THEORY)

n(x) = e /2(rxs2) [n,‘,‘-’)(k) - uéa)(k)] + el [1 /2 + 181(x) + Ci(k)]

HAIC TR 5h-29

0.05
0.10
0.15
0.20
0.3
0.k0
0.50
0.60
0.80
1.00

nSkl

1.0
0.9955 + 0.00961
0.9980 + 0.01914
0.9951 + 0.02844
0.9905 + 0.03761
0.9771 + 0.056hi
0.555% + 007721
6.3250 + 0.102h1
0.8854 + 0.13501
0.7815 + 0.23581
0.6579 + 0.40731
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Bow, for the single-lifting-lime wing model, the wake intensity at
a distance ¥ Dbehind the bound vortex is kept at precisely the same value as
ia the corresponding location of the actosl wing. Tws if, W(¥) is the vector
wake intensity of the actual ving, and W'(§) 1s that for the model, W(8) =

w(E) .

Pinally, for computational comvenience, the lifting-line model wake
is not started at the trailing edge location, but is instesd arbitrarily ex-
tended forward to the bound vortex itself. In the stream direction, the wake
oscillates vith frequency k ; this oscillatory character is simply continued
forward in the regiom between the quarter-chord location and that of the trail-
ing edge.

It should be particuiarly noted that the wake intensity behind e given
ving station depends only on the value cf the boud eirculstion at that station,
and is pot dependent on the bound circulation at other wing stations. The wake
comstruction is thus simple and direct.

d) With the bound and weke vorticities thus defimed, it 1s evident
thet the total dovowash at any point on the actual wing planform can be formally
calculated in a straightforwvard mamner. Mor the single-lifting-line thecry,
thig is dooe along the rear quarter-chord line of the actmal wing planform. Yor
a given ving geometry, and for s given oseillation frequency «) and air speed
¥, the dovnwash at & particular point oc this line depends on the function
T(y) , 1.e., on the spanvise distribution of the bound vorticity.

For the single-lifting-line theary, it is proposed that the total
nlocityukulateduthemmt&uﬂbedbente@ntothe&
Sownvash along the rear quarter-chord point of the sctual wing.

In amlytic terms, this regquirement regults in an integro-differential
eguation defining the functior [ (y) . For details, see the discussion in
Ref. L.

e) After the distributiop of bound vorticity is eslculated, the lift
and pitching moment acting at each wing station is determined on the basis of
the corresponding expressions from the exmct, two-dimensionsl ving theory. This
is in accord with the sssumption outlined in (a) sbove.

Bote that 1f this proce’ure is followed, the circulatory lift and

moment are corrected for aspect ratio effects. However, the apparent-mass terms
remin uncorrected, and are those from two-dimensiomal theory.

2. The earlier discussion outlines the formal aspects of the one-
lifting-line theory, and it 1s now of interest to investigate hov the theory

WADC TR 5k-29 -5-
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can be organized into s practical caleulation scheme. Emphasis §s to be placed
on the bandling of wings of arbitrary planform, inclmding both unswept and
svept vings, and wings with either straight or curved guarter- and three-guar-
ter chord lines.

To sccomplish this, the approach used by Diederich (Ref. T) and others,
in studying the steady-state loading of thin vings, is exteaded to the oscll-
lating airfoil case. This consists of essentially replacing the contimaous
ving vorticity distribution by a series of narrov-spaan horseshoe vortices, eath
placed gide by side, and each pemi-infinite in length in the downstresam direc-
tion. A schematic representation of the horseshoe vortex pattern is shosm in
Pig. 2. Bote that the mid-span of the leading edge of esch horseshoe wvortex
is situated on the foyward quarter-chord line. If the span of esch horseshoe
is made sufficlenily samll in comparison with the airfoll span, the errors due
to this horseshoe spproximation of the contimous vorticity distribution will
be small.

The construction of each harseshoe vortex for the oscillating case is
considered in detafl in Ref. k. PFor computational cocvenience, the span of all
the horseshoe vortices are kept equal, and the bound worticity is kept of ecm-
stant intensity across the span of each horseshoe.

If the wing is made up of m horseshoe vartices, then the probles
of determining the wing loading beccmes that of evaloating the = values of
bound vorticity for the horseshoes. To accomplish this, m downwash conditions
st discrete points can be satisfied. These =m points are chosen at the inter-
section of the resr quarter-chord line of the wing and the = lines defining
the mid-span of esch horseshoe.

In particular, suppose that the m borseshoe vortices each have a
span 27 , and that the ri} vortex has an intensity of bound vorticity

Toel®t | mhe posttive sense for T, 1s shovn by the arrovs in Pig. 2.
Now, let Vv, be the serodynamic inflmence coefficient relating the iutensity
of the ril vortex to the downmsh at the stB dowmemsh astisfaction point.
Then, the total dowmmsh st the s goint, due to the emtire horseshoe pattern
for the wing, is

W0 vy, Tt (2.1)
r=l

and this must be set equal to the geometric dowmvash of the wing at point s,
i.e., '
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can be organized into s prectical calculation scheme. Esphasis is to be placed
on the handling of wings & arbitrary planform, including both saswept and
svept wings, and vings with either strajght or curved guarter- aml three-guar-
ter chord lives.

To accomplish this, the approach used by Diederich (Ref. T) and others,
in studying the steady-state loading of thia wings, is extended to the ocsacil-
lating airfoil case. This consists of essentially replacing the continuocus
wing vorticity distribwtion by a series of msrrow-span horseshoe wortices, each
placed side by side, and each semi-infinite in length in the downstream direc-
tion. A schematic represemtation of the horseshoe vortex pattera is shown in
Fig. 2. Note that the mid.gpan of the leading edge of each horseshoe vortex
is situated on the forwsrd guarter-chord line. If the span of esch horseshoe
is made ~ufficiently smll in comparison with the airfoll spam, the errors due
to this horseshoe spproximstion of the contimaous vorticity distribution will
be smll.

The constructiom of each horseshoe vortex for the oacillating case is
considered in detail in Bef. &, Por computationsl convenience, the span of all
the barseshoe vortices are kept equal, and the dbound vorticity is kept of con-
stant intensity across the span of each horseshoe.

If the ving is made up of m horseshoe vortices, then the probles
of determining the ving losding becomes that of evaluating the = walues of
bound vorticity for the horseshoes. To accosplish this, m dowvomash conditions
at discrete points can be satiasfied. These m points are chosen at the inter-
section of the rear guarter-chord line of the wing and the m 1lires defining
the mid-span of each horseshoe.

In particular, ssppose that the = bhorseshoe vortices esch have a
span 2;' , and that the ri} vortex has an instensity of bound worticity
Toel®t | e positive semse for T, is ahown by the arrovs in Pig. 2.

Nov, let Vw_, be the serodynamic influence ecefficiemt relating the intensity
of the rl vortex to the dovnwash at the X2 dovnwash satisfac’ion point.
Then, the total dowmwash st the 82 point, due to the entire horseshoe pattern
for the wing, is

€ VY v, Tt (2-1)
r=l

and this must be set equal to the geometric downwash of the wing at point s ,
i.e.,
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vhere 3 is the dovpward displacement of the wing, and x is a rearsard
coordinate in the stresam direction.

The result of combining Bqs. (2.1) and (2.2) is the m equaticas in
the = unknowns Tr ’

USG) =V i Vg T; R , 8=1,2, ..., m (2.3)
r=1

In functional terms, it is to be noted thet the influence coefficients
vpg depend on the variables

Vg =12 [k: 7 » B, Xygr Y"] (2'1‘)

vhere x.. 1is the distance the point s lles behind the vortex |, (in the
strean direction), and y., is the distance the point s lies to the right
of the mid-span of vortex I;-

The calculation of the wpg is straightforward ia theory (see Ref. 1),
but entails a considerable amomit of computatioral complexity. As pert of the
present program, a detailed stody has been made of the mathematical cheracter
of these serodynamic influence coefficients, and a convenient means for their
accurate tabulatior has been devised. The results of this study are cutlined
in Appendix IT.

Clearly, if the single-1ifting-line theory were to be employed in the
design office, a complete tabulation of the values of Vg for various k ,
/0 , Xegf> , yo/b would be e practical necessity. (It 1s shown in the
Appendix that only a three-parameter tabulation is required.)

3. After the = values of ]", have been determined by sclziion of
Egs. (2.3), the wing 11ft distribution must be calculated. According o the

two-dimensicmal theory, the circulatory ving 1ift per unit span, positive in the
dovrsmard sease, is
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where B{2) 15 the Bankel function of the second kind and first order. This
circulatory 1ift acts at the local forward quarter-chord line. To get the =
three-dimensionsl circulatory 1ift, the r‘r values determined from Eq. {2-3)
are substituted for [ in Bq. (2.5). As mentioned esrlier, the non-circu-
latory lift and pitching moment qre calculated by two-dimensional strip theory,
with no aspect ratio corrections being introduced. T

e e

B. Double-Lifting-Line Model

k. As is evident from the prior discussion, the single-lifting-line
theory concentrates on the determimation of the cirenlatory wing lift distribu-
tion across the airfoil span. However, the theory has twc msjor shortcomings:
Pirst, it does mot account for movement of the local circulatory center-of-
pressure avay from the forvard quarter-chord line; and secondly, it does not
afford aspect-ratio corrections for the apparent mass terms entering into the
total wing 1ift and pitching moment.

At the expense of additional computational complexity, the double-
lifting-line theory is an attempt to remedy these shortcomings vhen calculating
serodynamie wing losdings. The following argument for estadblishing a two lifting- i
line wing model hes certain aspects in common with the ressoning employed by i
Bolme (Ref. 8) and Multhopp (Ref. 9) for the steady-state case. However, even
when applied to » wing in stesdy-state flow, the present model differs in its
details from the Kolme discrete-vortex spprosch. The Multhopp model does not
rely on 1lifting-lines, but on surface vorticity distributions.

S. The wing motion at each spamwise station y (taken in the main

’ stream direction) is assumed to be a cosbination of pitchiag motion and plung-
ing motion. Let B = B(y) represent the spanvise varistion of the ving pitch-
ing smplitude, and let bA = bA(y) be the sparwise varistion of the plunging
amplitude of the wing at the forward guarter-chord lime. Then the ins*antaneous
wing deflectinn, positive dowvnward, can be written as

z=b-elVt {A + (1/2 +!)B} (2.6)

vhere W is the circular frequency of the wing oscillation; t the time co-
ordinate; and R is a dimensionless coordimate local to esch station, with
origin st the mid-chord, and extending chordwise to the rear (i.e., parallel




L e

»
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10 the main stream direction). 7The wing trsiling edge $s at X = 1 , and the
leading edge 1s ot X = -1 .
mmnnnlwltynhuv;tothemmutm

W) . 9z/3t + (V/b) 33/9X = ¥ - 1Wt {io + 2 cos 6} (2.7)

where X =-cos © , V 1s the main strean welocity, and

P ik

Posm{»(lﬂb?)l

5 ik
R ]

A 2

vhere k = WB/V .

6. The assumption is nov made that the wing aerodynemics can be
described in terms of "strip” theory, i.e., that each smmall spsrwise segaent
of the wing behaves as 1f it vere in two-dimensional flow with the chordwise
dowmmash velocity

oo e ) (2.8)

Bere € 15 the }mmityortbﬂngﬂtulntm
unler consideration, and W'l) 55 the finite t-ratio indnction downwash.
The “effective” dowrmush om the wing is then :es .

It is now further assumed that the finite-aspect-ratio inductiocn
dowssash can be closely spproximsted ss

LA I [po + 2p,cos 5] velot (2.9)

vhere po = Po(y) smd p) = p)(y) are functions of the spamwise wing coordinate
¥ . Then the effective dovnwash becomes
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'(e) = [Po + 2,co8 5] velwt
were P, =P, -p, 2 By =P -p

The resultis of two-disensiooal theory then give, for the chordwise
pressure distribution at each station,

n.pvze““{au eot-g—ohlmi«vaacin 25} (2.11)

a, = C(x)(p, - P)) + P,

1 . L
o= W, -F s a0

apd where C(k) 1s the well koown Theodorsen circulation function given by

(2)
c{x) = h ()

) + 1m{2)(x)

The wing 1ift per unit spaa, positive dowvnward, is then

L= .,oize""‘n * 27%(a, + ay)
- 27,0V lVt {c(k)(Po AR Po} (2.12)

and the nose-up wing moment per unit span stout the forward quarter-chord
point is

HADC R 5h.29
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- -7 PRIt {- P+ %". (e, - -12- Pl)} (2.13)

7. It is nov of interest to note, fram Bg. (2.10) that
, - l’l)vé“’t - "21)4'2 - "ge') (2.18)

vhere 'ée) 15 the effective dowmwash at the resr quarter-chord poizt. Also

ruvei“’*' = u,(: = u§°) (2.15)

vhera U{e) is the effective dovnwash at the mid-chord peint. It also follows
that

rlve""t = ui") - n‘g" (2.16)

(e, - _%_ Pl)'leu"’t = _;_'- {lée) + ng)} (2.17)

The 1ift and momest per unit span can then be writtern as

L=-270o™ {c(k) oo, 3 H{e,} (2.18)
Ke/i = -7 p WP {(V(e) -¥fe)) L1 " (v; ) Hi )} (2.19)

It is tixns seen that both the 1ift and the moment depend only on the walues of
the effective dovmwash at the rear gquarter-chard point and at the mid-clord
point. Note that this conciumsion refers to the cosbimation of botk eirculatory
and non-circulatory terss.
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O. The construction of the two-lifting-lize model can now be exam-

ined. It is clear that the chordwise points chosen for dovnvash satisfaction

should be at the mid-chord and resr guarter-chord. The remaining requirements
vhich the cosstruction should satisfy are the following:

{a) Yor the ving of infinite rspect ratio, the
aode]l should give the exact results for lift and moment.

(t) In order that tbe wake construction for the
actual model and the ving be identical, the sum of the cir.
culatioss of the two lifting lines should equal the wing
ecirculstion at each station.

In the interests of setting up a camputational procedure of greatest simplicity,

the additiomai restriction will be introduced that the positions of the lifting

lioes & pot change as the reduced frequency k of the oscillation changes.
The best locations for the lifting lines would appear to be those

vhich are exactly correct for the two-dimensional wing in steady-state fiows
If the discrete vortices have the istensities [; and T, » vhere

Nen v wm Gegoaev o,

and are locsted at X = &) and x= &, , the equations to be satisfied are

i+ =27 [‘é"/v] (2.20)
HJE - 0) 4 7/(5, - 0) = -2n]ulSp] (222)
YL - 1)+ n/(5, - 1) - 2e[w®p] (222)

These three equations have four unkncves ([ ]-'2, g E.z);
hence, one uskeown may be set arbvitrarily. For cosputational convenience, the
location of % is set intermediste to the points of downwash satisfaction,
1.e., £, =1/4 . It then follows by elimination from Bgs. (2.20) through
(2.22) tat §; 1s determined by

#* Por further discussion of this point, see later discussion.
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2
or, since ﬁw-ug‘) for stesly-state flov sbout the uncambered profile, and

with EQ'm:

r--1 (2.24)

i.e., the forward 1ifting line should be located along the forward one-eighth.
chord line.

9. With the locations of the lifting-lines and the points of dowsn-
wvash satisfactiom fixed, it is now possible to proceed with the constructiom
of the two-liftisg-line model for the osciliating ving. This constructios
will be accomplished in a fashion analogous to that used earlier for establish-
ing the single-lifting-line model.

Consider first the two-dimensional wing. For a total bound circals-
tion | el®t  the wake construction and wake induction are discussed in Ref. §.

The partion I3/T7  of the wake can be imagined to be associated vith the for-

ward lifting line, and the portion T'an" can be assoclated with the rear
lifting-line.

As in Bef. &, for computatiomal convenience, the wake components ere
to be extended wp to the 1lifting limes themselves. This must be done in suck
a fashion as to preserve the proper magnitude of the wke vorticity at all points
behind the ving trailing edge. At a distance & behind the trailing edge, the

sctual wake vortieity 15 xTe 8 19t * my 1ot € and §" be rearwrd
coordinates with arigins at J; and T, , respectively. Extending the wabe
wto I} then gives & vorticity distribution of 1x Tpe X0 § -1/M) 1% o
the T} nbm‘:;extmﬁngthenkenpto Té glves a vorticity dist-i-
betion of 1k T ™5 3/4019% £or tne T, wake component.

Prom Ref. &, the serolynsmic downwvash velocities W sad W,
st E=0 and ¥ = 1/2 , respectively, due only to the )’1 wake are:

Doe to ¥) wvake at X =0,

* Bee Ref. (5)
WAC TR 5k-29 -1k -
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Uy = ) - el (2.)
Due to )} weke at X =1/2,

Uiy = 12 alse) - 2t (226)

Analogously,

Due to ¥, vakeat X =0

By = 1 G(A) - 7t (221
Due to J, wakest X: 12,

Gy = 1K - €52 L Gy + g et0 (2.8)

vhere G(u) is defined by (2.37).

Next comsider the dovmwmsh ue to the [} sot [, 1ifting lines.

In order to comstruct the model in sach fashion that the two-dimensional air-
foil theory is exactly duplicated, it will be found necessary to wltiply
the ¥ amd X inductions by the semi-empirical factor - F{k) . Then
the dowmmsh comtributions W¥;; , ete., of the lifting lines (bound vorticity
contributions) at X =0 and X = 1f2 are reaiily formilated as:

Daeto /) at B=0: Wy =5t L/ fw(z)} (2-29)
Duetc ) at T=1/2: Wy = welft y/ {21(5/10} (2.30)
Dueto By at $a-0: Wy =5t g/ {21!(4/&)} (2.3)

Dueto ¥, at T=1/2: Uppy = it g{zv(l/h)} (2.3)
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The equatioms governing the construction of the two-dimensional
oscillating ving model are then

Y+ %=yl -y (2.33)

4{“Bﬁ+ﬁ°e“-ﬂkﬂ$*)Efﬁ*n-eﬁ-MJﬁQ-ew-ﬁ@ﬁ

(2.34)
ik ik
{(b/s)n +1k - e? - 6{5k/k)} + {hn + ik ° . G(k/k)} =27 928)/7
(2.35)
vhere
Alx) = —g-ﬂx{ B ) - ) (x)}e”‘ (2.3)
(@ (2

and K, ' , H ' are Bankel functions of the second kind. The function G{u)
is defined by the relation :

G{u) = -{c1(u) +181(u) + 1 1r/2} {2.31)

vbere 81 and Ci are the "sinus Integralis” and "cosinus integralis” func-
tions, respectively.

Bquations (2.33) through {2.35) are three inhomogeneous equations in
the three unknovms § , ¥; , and ), . By s evident algebraic mnipulation,
the three equations can be converted into & guedratic in & , of the form

clie + cz'ﬁ teg= 0 (2.38)

where coefficients €] , cp and ¢y are esch functions of both k and the

ratio s/ E) . Bence, the © roots of the quadratic are likevise dependent
on these parameters, i.e.,

=1 [k, ‘,18)/‘,(8)] ‘ (2.39)
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It is mow proposed that the fector T serve the same role in the

two-1ifting-1ine theory that the factor (k) - ¢13%2 gerves in tm single-
1ifting-line thwory. Pms, the factor & 1is introduced when computing the
doummsh due to the dowsd vorticity. Whea smalyzing s wing of isfimite aspect-
retio by the two-liftiag-line model, the exact results of two-dimemsional oseil-
1ating ving theory will be duplicated.

Note, however, that & depemds both ook and on the rstio

w}"/é‘) « The second parameter introdaces a gluizm!'uee type consideration

into the two-lifting-lime procedure; this, of course, is to be expected from
the mture of the comstruction of the theory.

Note also thet the ratio v{‘)ﬁg‘) is determined by the local center

of rotation in pitch of esch ving station. Hence, for design-office use, a
talmlation can be prepared of 1§ values for various k and alsc for variocus
wiag rotation cemters. Depending om the mode shape, this center of rotation
my vary all along the spen.

Pinally, it is to be noted from Bg. {2.39) that two valoes' of & are

calcalated for each x wnd WO/ combimetion. As X—>0 , coe of these
vaines vill approsch unity, while the other will spproach sero. Omly the former
is a physically sdmissible N value, ard this only should be used. Typical
valmes of @ , calculated for pure translstory wing plunging, are shown plotted
vs. k in PMg. 3.

10. It is now possible to ocutline the double-lifting-lise procedure
for a finite wing of srbitrary planform. The discrete horseshoe wortex is once
agaia used as 2 besis for the calculation, az & means of simplifyimg the pro-
codure. Horseshoe vortices are placed alomg the 1/8- and 5/8-chard lines, as
shown schematically in Fig. b. For convenlence, all the horseslioes sre made of
equal span, and the dowowash satisfactiom points are taken at the horseshoe xid-
spaa stations. The wake for each horseshoe is composed in the ssme manner as
in the preceding Sectiom 9 amslysis, and the induction due to each wortex is
calenlated by adding that due 0 the wake, plus © times the indweijon due to
the concentrated bomnd vorticity. The mammer of computing the dowssssh at-a
poist on the wing dme to each horseshoe vortex is outlined in detail in Appendix
IX. ‘

Now let m horseshoes be used along the 1/8-chord line, and let =
horseshoes be used along the 5/8-chord line. Let their bound vorticity inten-

stties be  11e'9% ana T,e'®t | respectively. Mext, define the follov-

ing serodynamic influence coefficients:

VADC TR S5h-29 -17 -
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Pig. b - Sehamatic Bepreseatation of FKorseshoe Vortex System
For Double-Lifting-Line Theory.

(The deavy dots are poists of dowpwash sstisfaction.)

WADC 'R 5L-29 -19 -




B T Wy

L .

5. 0.
st :
B T

Wy k¢
.

"l(‘ll) = influence coefficlent relating strength of bound
vorticity at 1/8-chord at r*2 station to dovn-
vash at 1/2-chord at &2 gtation.

"vgz) = influence coefficient relating strength of bound
vorticity at 1/8-chord at r station to down-
vash at 3/3-chord at sl station.

hgl) = influence coefficient relating strength of bound

vorticity st 5/8-chord at r® station to down-
wash at 1/2-chord at %2 station.

h‘(.?) = influence coefficient relating strength of bound
vorticity at 5/8-chord at r'2 station to dovn-

vash at 3/i-chord at s*® gtation.

Then, 1t w{8) 1 fis geometric dovmmsh of the ving at the 1/2-chord Lime at
g

station s, and Wy,  1is the geometric dowvnwash st the 3/4-chord line at
station s , the unknowns rh, and T'er are determined by the 2m equations

e () (1) ]
g 1t it
Vg =V Vs ];re +V Yrs rzre

r=1 ral

N Al S D CUD S
r=1 r=l

-31’2, sssun 3 B )

The calculation of the influence coefficients Vvl(.:l) 5 ete., in-
volves the ssme ccaplexities as encountered earlier when dealing with the Vo,
of the single-lifting-line theory. Appendix II outlines a procedure for esl-
culating these coefficients on the basis of mathewaticel functions slresdy tabdu-
lated elsevhere, plus certain readily tabulated new functions. For design-office
use, s complete tabulation of the V., functicn would be essential for con-
venient use of the method.
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11. Rolloving calculatim of the |5, and To from Rgs. (2.%0),
it remsins to ealculate the spamwise distribution of wiszg lift and pitching
momert. This is done through use = Bgs. (2.18) and (2.19).

At a particular station r , the effective dowmsmsh velocities ng)

ana W) wre rirst calculated. s clearly depent aaly on the values of
[ir amd T, at that station. Prom the discussion lesding to Egs. (2.3)
and (2.35), 1t is seen that

(e) 12t
2y ir . _.'!1-_“:_.. {La + 1eik c(zm)}
v v 3

I B 10t ]
ik R —%;:%— {AE + s G(-k/h)} (2.41)
'l and
J ) 1kt
’g 2w“é: = ..E_;:___. {_;. 7 s w2 G(iﬂz}}

10t
. ._].;_f_fﬁ.._ {hﬁ . a2 G(x/h}} (2.42)

Substitution vg) and w(a_'-') £1 Bgs. (2.18) and (2.19) ylelds the loea®
values of L asd My, -
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II.. FIUTTER ANALYSIS FOR NINE WING MOUELS AND A COMPARTSON
BENEEN THECRY AND EXPERINERT

1. In order to appraise the sccuracies of the warious finite-aspect-
ratio aerodynamic theories, flutter amalyses were conducted for nine model visgs.
Bach of the model wings wese flutter tested in & wind tummel, 30 that experi-
mental flutter speeds and frequencies were aveilable for comparison with the
calculated values.

The wings dealt wvith are all of the half-span, “image" type, i.e.,
the roots of the models were mounted into a plane tunnel wall. The aspect
ratios quoted in this report are oot for the actual model wing, but are twice
as large, representing the model plus its auxiliary “"imege" half. Bence the
aspect ratios correspond to full-spen wings fluttering ir symsetrical flutter
modes .

- Of the nine wings, four are of the semi-rigid type, i.e., the airfoil
is rigid, and is hinged at its root by mesns of elastic springs permitting
flapping and pitching. Two of these four wings are unswept, while the remain-
ing tvo bave b5° sweep-back, and are derived from the unsvert models by simply
rotating them by 45°,

The remaining five wings are of the elastic, castilever typs, and were
mounted 30 as to be rigidly built-in at their roots. These wings have sveep-
backs ranging between 0° and k5°.

All of the nine vings are of the "uniform wing™ varlety, i.e., all
have unchanging inertial, geometric and elastic properties cver their entire
span.

A general description of the nine wing models is given in Table II,
and a detailed listing of the model paraweters if given i= Table III. Note tiat
the aspect ratios for the nine wing models range from 2.5 tc as high as 8.1.

Note that the ninth ving actually comprises three wind tunnel models,
Bos. 9, 9e and Gb. The parameters for wing No. 9 are those of & mode] scheduled
for test at the time these calculailons were undertsken. This model was sub-
sequently lost dwring the tests prior to cbtaining any fiutter data. Wings ks,
9a and b were to replace No. 9, but thel- parameters were changed slightly.
Also_f_qzthe latter vinge, a second bending mode unfortumately close to the
fundamental torsion frequency made its sppearance. (See lster discussion)

WADC TR 5k-29 ‘ -2 -




[, e - - P e cm——

- e i s St = v o s e L — .

GENERAL IESCRIPTION OF THE M.IEL WINGS

- Nodel General Description and Reference

- 1 Model described in USAF Nemo Rep. TSEACS-h595-2-5 (Ref. 10).

. Unswept unifora ving model with constant chord and of the
sexi-rigid type. Locatiorn of flapping axis: 0.1563 ft in-
board from ving root; location of twist axis: 25% of chord,
measured from wing leading edge. AR = 8.1.

2 Reference: same as for Model No. 1. MNodel bas 45° sweep-
back and is of the uniform, semi-rigid type. Model No. 2
is derived from Model No. 1 by rotation of the latter
through 55° about the normal to the bending esnd torsion
axes at their point of intersection. Wing tip is normal
to the leading edge. AR = 4.1 .

3 Model described in USAF Memo Rep. TSEACS-B591-5-1 (Ref. 11).
Ungwept, uniform wing model with constant chord and of the
sexi-rigid type. location of flapping axis: 0.3333 £t in-
board from wing root; location of twist axis: 35$ of chord.
AR=62.

Y Reference: same as for Model No. 3. Model has 45° sveep-
back and 18 of the uniform, semi-rigid type, cbtained by
rotation of Model Bo. 3 through k5® in the same manner as
Model No. 2. Wing tip 15 normal to the leading edge.

AR = 3.1 .

ey

5 Model described in MACA Bes. Memwo. L50C15a, June 1950, (Ref.18)de-

noted there as Model 152A. Model is a uniform, unswept

ving of the elastic cantilever type. The wing is rigidly 5
5 built in at the root. AR = 4.0 . A

€ Model described in NACA Tech. Note 2121, June 1950, (Ref. 12),
: , denoted there as Model 1hA. The model has §5° sweep-back

. and is of the uniform, elastic cantilever type. Wing is of

i constant chord and is rigidly built in at the root. Wing

‘ tip is parallel to the main flow. AR = k.0 .
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PAME IT  (Concluded)

General Description and Beference

NModel described in HACA Tech. Bote 2121 (Ref.12) dencted
there as Model 13. Wing is of the uniftrm elastic eanti-
lever type, ms 30° sweep-back, and has & ving tip parallel
10 the stream direction. AR = 8.0 .

Model described ir BACA Tech. Note 2121 (Ref. 18, denoted
there as Model 22'B. Model is of the wmiform, elastic
cantilever type, has 15° sweep-back, and has its wing tip
paraliel to the stream direction. AR =4.0 .

Model described in Suppiemental Agreemest S 2(53-321) under
the present contract, denoted there as Example No. 3. Wizg
is of the unifora, elastic cantilever type, with streas-
wise tip, and §5° gweep-back. AR = 2.5 .

Models similar to ebove No. 9, and described as Models IIT

and IV, respectively, in WADC latter, WCISY, 1 July 1953,
present contract.

Y
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2. A1l of the fiutter analyses were conducted on a two degree-of-
freedom basis, employing the fundsmental, weoupled wing bending and fundas-
mental, uncoupled wing torsion modes as the generalized coordimstes. Since
the wings had been chosen 30 that the frequescies of all higher modes are
well sbove the frequencies of these fundamestsl modes, the use of & two degree-
of -freedom analysis is Justifisble. (As alresdy mentioned, this condition was
violated through error i Models u and Go. See later discussios.)

The sode shapes for the elastic esmtilever models were mot determined
experimentally, but vere ingtead arrived at by theoretical calemlation. The
wings being uniform, the simpes in questiom merely correspond to the funda-
meatal bending mode and the fundsmental torsiom mode for a unifurs bar.

Estimates of the damping coefficiests appropriate for the various
modes were supplied by the sponsoring agency, after inspection of the models,
or were determined by actaal decay tests.

Sinee ell of tie flutter analyses are based on incompressible air
forces, a correction for compressibility effects is required befuore comparison
ean be made betweer the calculated and experimental results. This was done
on the basis of the Prasdtl.Glguert rule, iz the manner outlined in Ref. 2.

3. In the interest of brevity, the detailed calculetisss for the
varioos analyses are not presented here. Nowever, the followving remarks
outline the msamer in wideh they were carried out.

The equations of motion were deriwed in conventional fashion, in
the mamoer outlined by Smilg and Wasserman (Bef. 2) for the unswept wing,
and by Spielberg, Pettis amd Toney (Ref. 13) end Pettis (Bef. 3} for the
swvept wing. The aerodymsmic treatments in these references are all based on
tvo-disrnsional strip theory; vhen a differest serodynamic theory is employed,
the geseralized forces im Befs. 2, 3 and 13 mst be reinterpreted accordingly.
The necessary thecretical changes are evident and need not dbe deait with in
detail bere.

In the work vhich follows, when refevence is made to the "two-dimen-
siomal strip method”, it 1s implied that the serodynamic treatmest is based
on two-dimensionnl strip theory, the strips being taken in the stresmwise
direction. The calculstiossl procedures are descrided in detail in Refs. 2,
3 and 13.

The matures of the “Wasserman-Reissmer™ and “NWesserms-Biot”

serolymmic treatments are outlined in Appendirx I. The two differ only in that
the foomer uses the Reisszer theory (Refs. 5 and 6) to determine (P + 36)3 R
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while the latter mukes use of the Biot-Boehnlein theory (Ref. 14) for this
detarmination. The mmmer in which these aerodymsmic approsches are intro-
duced into the flutter amslysis is discussed in Agpendix I. In both cases
the stealy three-dimengionmal circulation distributions were calculated dy

the Velissinger method uaing 15 points scross the span.

Considering next the "single-lifting-lime method”, this is cbviously
based serocdynamically cn the theory givenm in the preceding section of this
report. For the mmerics, the wing span (vhich eqoals twice the actual span
of the half-image models) ms divided into elevem egual increments. A discrete,
oecillatiag horgeshoe vortex was employed withim each of these sleven spanwise
intervals, and the dovowash satisfaction points were chosen at the mid-span
of each imterval. This affords eleven points of dowrsrash satisfaction, equal
in maber to the mmber of vortices employed. Note that the centrsl downwvash
point then falls st the exact mid-span of the wing. The downwash fafluence
coefficients for the single-1ifting-line wethod were calculated in the manner
described in Appendix II.

In carrying out the serodynamic analyses, advantage was taken of the
symmetriczal character of the flutter modes. By symsetry comsiderntions it is
evident thet the intensities of each pair of “"image" vortices arc equal; bhence,
only the intensities of six of the eleven horseshoe vortices reguire evalua-
tion by sclution of simultaneous equations.

Once the spanvise distributions of 1ift end pitching-mcment were
evaluated for each of the gemeralized coordinatex, the technique of flutter
snalysis was carried out in the Ref. 2 smanner.

Finally, for the double-lifting-line caiculations, elever discrete
horseshoe vortices of equal span were distributed along tix one-eighth chord
lipe, und eleven equal-span vortices were distributed along uix Iive-eighths
chord lise. The dovowash influence coefficients were caleunlated aecording to
the Appendix II formmlae.

In evaluating the bound vorticity intemsities, symeetry considerstions
permitted the mmber of simultaneous equations reguiring solution to be reduced
from twenty-two to twelve. Eometheless, 1t is evident thet calculations by the
two-liftieg-1line approsch sre tedious and require that automstic ealculation
technigques be enlisted for convenience.

b. A sumesry of the results of the fiutter analyses for the nine
vings is given in Tables IV %0<VIII. The first two tables list the calculated
and experimental flutter speeds and frequencies, vhile Table VI and VII glve
the ratics of the calculate and observed values. Table VIII lists the computed
and experimental reduced speeds V/ow .
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A typical V-g disgram, for wing Model 5, is shows ia Fig. 5.
The wode adapes for this visg are given in Fig. 6, while Pigs. 7-12 present
some results of the serodysamic cslculations for Model 5 sccordisg to both
the siagle-and-dowble-lifting line theories.

These Nodel 5 ressits are fairly typical of the variows wing cal-
culations, and Figs. 5-13 are intesded to give some physical imsight into
the claracter of the scrodymamic performance of the wing sceordisg to the
single-and-double-lifting line theories.

An smlysis of the conclusions indicated by Tebles IV s VIII and
Tigs. 5-12 is left for the wext section of the report.

5. A word of explamstion is in order as t0 why each wing was not
flutter-smalyzed on the basis of all the serodyssmic theories employed in
the stody. The progras was started with the sim of evalusting the merits
of the Wasserman procedures by flutter-amlyzing dodels 1-6 by two-dimen-
sioma] strip thecory, ssd by the Waseerman-Biot sad Wasserman-Reissmer pro-
cedures. While these cslculations were under way, the sisgle-liftisg-line
approach was developed.

The single-1ifting-1ine theory was mot applied to Models 1-h,
since question hed arisen regarding the mature of the flow im the 7oot region
of these semi-rigid wisg wodels, and the sccurscy of conventiomal, image-
type flutter analyses was opem to argament. HNeace, Models 5 and 6 were
stulied by the new theory, Models 7-9 being added after the prelimimery
trisls showed promise.

Fimally, whea the double-lifting-lise theory was developed, only
Nodel 5 was analyzed prior to conclusion of the program. This sodel was
chosen, since it was felt thet the initial exploration of the theory should
be based on an wmewept wing.

IIX. DIBCUSSION

1. In evalmting the merits of the warious sethods for fiwtter
ssalysis, the appruisal should be saide from two standpoimts: First, from the
desigeer’s point of view, which method gives closes’ oorrelstiom with the ex-
perimsutal flutter spesds? This, cbvicusly, is the criterion of mwt pressiag
interest to the precticing eugineer. Of secondary importance, mialy as fur-
ther evidence of the dspeadebility of s promising method aad for wee in such
instances ss the plamming of flight-flutter tests, interest iy also centered
in vhether the finttar spesd correlation is sccompenied by agresmsut between
the caleulated sal chesrved flutter freguenciss and mole shapes.
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A second basis for evaluation is from a more research-minded stand-
poist and centers aromad the choice of a method which best described the details
of the physical phenomesa involved in the ficiter mechanism. In the present
stadies, it is felt that the inertial and elastic portions of the mechanisa
are described vith gool sccuracy; hence, the character of the regults should
be imlicative of the success achieved by the warious methods ia describing the
serolymmic phases of the problem. In gemersl, it is to be expected that the
quality of the flutter mredictions vill impwowe as the serodymsmic treataent
becomes more nearly theoretically wvalid, aad it 1is interesting to amalyze the
present findings to detersine vhether they comfirm this expectsiion.

2. Before proceeding with the emalmation of the worth of the var-
jous flutter amalysis methods, it should be recognized that coaclusions are to
be based on 8 comparisoe of calculated and experimentsl flutter data; hence,
the accuracy of the latter is of cardinal importance. In partieular, the
merit of a calculated walme of flutter speeld or frequency mist be sppraised
by cosparison with the cheerved value plus cr minus the applicsble range of
uncertainty of the experimental messurements.

In the case of the models dealt vith here, there is every reason t©
believe that the various test agencies used both care and skill in constructing
the test items and in earrying out the flutter tests. Eeace, the accuracies
of the cbservations are umdoubtedly represeziative of the very finest of cur-
rent test practice.

3. It is now pertinent to exam:ne the results shown in Tables IV
through VIII. As a starting point, consider the unswept wing mdels, 1.e.,
Models 1, 3 and 5.

Models 1 and 3 were analyzed only by the two-dimensiomsl strip
method and by the two wariations of the Wasserman procedure; Model 5, on the
other hand, vas analyzed ca the basis of all of the aerodynmamic theories treated
in tuis study.

Consider rirst the results cbtained from two-dimensicael strip theory.
For the unsvept vings, the predicted flutter speeds are alvays eonservative,
i.e.; are alvays lover tha=z the observed valwes. This, of course, 1z a desirable
festare for a design procedure, providing the degree of conservatisa is not
large. For Models 1 apd 3, the extent of comservatism it on the order of 5 per
cent, while the flutter speed prediction for ¥odel 5 appears to be sbout 10 per
cent low,

The flutter freguency predictions by strip thesry for Models 1 and 3
appesr 1o be definitely 1%, by some 10 - 15%, vhile a surprisizgly close
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frequency prediction is achieved for Model 5.

Turning next to the two Wasserman procedures, it is seen that the
flutter speed predictions are all unconservative, i.e., too high. it will
become apparent in the later discussion that this is an undesirable charac-
teristic of virtually all the flutter predictions based on the finite aspect-
ratio serodynamic treataents. Compering the two Wasserman-type methods, it
is clear tiat the Wasserman-Re_ ssner variant is superior to the Wasserman-Biot.
Por Model 3, the Wassersan-Relssner flutter speed prediction is about 5% high
{unconservative), while the Model 1 and 5 predictions appear to be some 10 - 15§

high.

As regards flutter frequency, the Wasserman procedures appear to
result ie better agreement vith the observed values than does the two-dimen-
sional strip method. On the other hand, most of the predictions lie ocutside '
the range of experimeatal uncertainty.

The Model 5 calculation based oz the single-lifting theory
sppears to offer a slight improvement over the Wasserman-Reissner caleulation,
both with regard to flutter speed and frequency, slthough the speed prediction
continues to be undegirsbly unconservative. It is pointed out in Ref. % that
the pri=ciple advantages of this theory should arise in the treatment of
sharply swept wings, and this will be borpe out in the later discussion.

Because of the tedious nature of the sssociated mumerics, only one
wing wvas analyzed on the basis of the two-lifting-line theory, this being
Model 5. The results shov & definite improvement in flutter speed prediction
over all the other finite-aspect-ratic cslculations, the flutter speed being
in error by about 5%, although on the unconservative side.

Oz the other hand, the flutter frequency predicted by the two-lifting-
line p.ocedare is some 15% lov. This result is a disappointing one, and is
discussed in more detail later in this section.

As a geners)] conclusion the preceding results tend to jndicate that
design office flutter analyses of unswept vings should employ two-dimensional
strip theory in preference to sny of the finite span flutter theories tried
bere. This method is a well known one, is relatively simple to apply, and %
also affords results of good accuracy and moderate conservatisa. It is in- '
teresting to note that this comclusion merely confirms general practice, which
is based om the broed experience of many design-office analysts.

L. Eaving examined the unswept cases, it is next of interest to
inspect the results for the most highly swept wings, i.e., Models 2, &, 6 and
9, all witx b5® gweepback. .
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An examination of the flutter predictions for Models 2, &, 6§ and B
shows at once that the use of tvo-dimensional strip theory for sherply swept
wings is generally unsatisfactory. With regard to flutter speed, the results
for Model 2 are satisfuctory, but the predictioss for Models b, &, snd %o are
conservative to the unscceptable extent of some 35%. The flutter frequency
predictions by thie method are also poor.

Considering next the Wasserman-Reissner results, it is seen that
flutter speed predictions om this basis for the A5° swept wings fall in the
range of from 80 - 120% of the experimentdl values. For Models 2, b, 6, the
recorded flutter speed errors are 184, -M and -18%, respectively. The flut-
ter frequency errors for the same models are -20§, +1%, and +15§, reapectively.
The exzellent predictions of both flutter speed and frequency for Nodel b
would sppear to be coincidestal; in genersl, spplication of the Wasser=an-
Reissner technique to sharply swept wings does not seem promising (ste later
discussion).

The second Wassersan variant, namely, the Wesserman-Biot method,
also does not appear to give results vhich agree with the experimental obser-
vations with any consistency.

Turning nov to the single-1irting-lime theory, calculations are
available for Models 6 and 9. For Model 6, both the speed and frequency are
) predicted with excellent securacy. For Model §, the agreemrnt between cal-
culations and the Nodels 9a and b experiments is not good, but this may not
be due to incorrectness on the part of the serodynamic theory. As already
noted, the second bending modes for Models Ga and Sb have frequescies close
to the first torsiocn mode. Bence, for accurscy, a three degree-of-freedos
analysis way be required, vhereas the present results are for only a two de-
gree~of -freedos treatment.

In order to check the validity of tws degree-of-freedow ecslculations
for Mcdel Gb, personnel of the Dynamics Branchk, Aircraft Laborstory, WADC, con-
ducted two-dimensional, strip theory calculations taking into scesunt (a) only
the fundamental bending and torsion modes, and {b) the first twoc bending modes
Plus the fundasental torsiom mode. The results of these calculstions are
shown in Tables IV-VIII, sod tend to indicate that neglect of the second bend-
ing wode as a degree-of-freedom does not lead to serious error. Nence, the
opinion expressed in the preceding parsgraph my be unduly pessimistic.

5. An examination of Models 7 and 8 {s now of interest. Model 7
bas 30° sweepback. Using two-dimensional strip theory, the caleziated flutter
3 speed is approximately 37§ conservative. ‘This 18 in geperal sccord with the
results obtained for the 45" swept wings. Oc the other hand, the single-
lifting-line theory yields quite excellent fintter speed prediction, alihough
disappointing flutter frequency estimation.
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Model 8 his 15° sweepback. By two-dimsssiomsl strip theory, &
20§ comserwative flutter spesd is predicted, while the flutter frequency
prediction is accurste withis the rangs of experimestal uncertainty. The
single-1ifting-line theory gives results which sre 1M unconservative

in flmtter speed, and whick are 9§ in error in flutter frequency.

6. It is thos seem from the swept wing stedies that & camvincing
argoment emerges against the wpe of two-dimensioml strip theury for sharply
wwept vings. Also, both Wesserman procedures sppesr to lead to errstic pre-
dictions which are geserally mmsatisfectory.

The single-liftisg-line theory sppesrs to offer most prosise for
sharply swept vings, as is imlicated by the results for Nodels 6 and 7. How-
ever, even vith this tiwory, the flutter frequemey predictions are mot con-

sistently satisfactory.

T. PMinally, consider the various acroldymsmic treatments from the
point of view of their theoretical merit. The Wasserman procedures are
clearly seui-empirical, as is evident from the Appesdix I discussion. Hence,
they are d4ifficult t0 sppraise on purely ratiosal grounds.

As regards the two-dimensioral strip method, this is charscterized
by negleet of the aerodynamic imter-sction between the vorticity patterss at
and behind the various ving ststions, &.e., esch ving station "sees” a two-
dimensiomal (infinite span) vorticity distribotiom. It is to be expected
that this spproack will lesd to the greatest error for sharply swept wings
(see Ref. §), and the presest results confirm this in convincing fashion.
On the other hand, for unswept vings of moderate to large aspect-ratio, the
errors will be smaller, and in fact appear to be within the range of the
required design office sccuracy.

The single-lifting-line theory was developed to have particular
applicebility to sharply swept wings. For such cases, it has a generally
ratiom} foundation. On this besis, the satisfactory agreement in predicted
flutter speeds by this method for Models 6 and 7 is mot surprising. Hovever,
the poor agreement in flutter frequency for Model 7 is swrprising.

The double-lifting-line theory should be the most theoretically
satisfactory of all the methods dealt vith in this program. Howvever, the
dodel 5 resclts do not appesr to bear out this expectation, and because of the
elaborste neture of the caleaulations required for the method, only this single
case could be attempted.




-
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An oddity of the Nodel 5 calculation by the double-lifting-line
theory is worthy of special memtion. As is vell kmown, the characteristic
roots of the stability (flutter) determinant for a two-degree-of-freedom
atalysis are two in pusber. In the method of flutter analysis employed in
this stady, the reduced speel V/b« 1s used as 3 varisble parameter in
Seterniniag the values of the determinant elements. A plot of the clmrac-
teristic roots vs. 3/bw thms yields two distimet stability "branches”®,
and cne of these branches lesdls to the flutter comdition.

It ves noted that the double-lifting-lime cslculations lesd to
ﬂum:dmgadmemtmthndotumuonsbymtheother
methods. This resulted in “dowbling back® of the V/ou) vs. g plot, which
hgnnm_lbehvio;fw-dubem-mmnntterun. The ressons
torthhemldmtbermlﬂ,altho@mchleﬂartm-ﬂetoim
that the double-lifting-line computaiions are free from error.

8. An examination of Pigs. 7-12 is now of interest as a means of
comparisg the predicted serodymsmic performance of an unswept wing o the
basis of the single-and-double-1ifting-line thearies.

M.?MBMMW&M:ﬁmmmmuon
ufviucimhtimform\dingnndmimm,lcmto&m
theories, do not differ grestly. This is to be gemerally expected. Om the
other haad, particularly for the torsion mode, mazhed phase differences between
mmmtmmmmemm.

mmmemmtioutorthemmmumuny.
9mm,ummtmunmme-mmbymmm.
mmum-lmn‘-n.mmwmupmmm-
the one-lifting-line procedure.

Fimlly, ua.n-nlzmwunmmn_unﬂmm for
mmm,umwmmmmm. The differences between the
mm-reqnitemmm, unuﬁthththeoretimlwm.
nnmmwm,m,m&cw in caleulsted moments
imnt&evmtipreamua

.

IV. CONCLUSEINS: RECOMEIDATIONS IOH
IETHER RESEARCH

—————————————

1. mmmudu-nw.-mm,mfammm-
clusions sppear in order:
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8) FPor unswvept, or slightly swept wings vith moderate to large
aspect ratio, design office subsonic flutter calculstions should presemtly
Le based oa two-dimensiopal strip theory for the serodymamic treatment. A
moderate aad acceptadle degree of conservatism is to be expectsd in the flut-
ter spesds predicted on this basis. The predicted flutter frequencies will
not, hovever, be dependable.

®) The Wesserman procedure, the single-lifting-line method, e=d
the double-1lifting-line method should not be used for the flutter amlysis
of unswept or slightly swept wiags of reasomable to large aspect ratio.

¢) Por sharply swpt vings (say 25° or grester sweep) with moderate
to large aspect retio, the single-lifting-line theory presently offers most
promise for the serodynamic trestment of the subscalc flutter problem. Nowever,
this conclusion met be regarded as tentative until further confirmstioa is
achigved by additiomal trials. In general, the caleculated fiutter speeds will
be considersbly more dependable than the calcunlated fiutter frequencies.

d) The Vasserman procedures sppear to be unacceptable for the
treatasat of wings with substantial sweep.

2. The folloving recommsendations are made regarding further de-
sirabls ressarch studies:

a) The single-lifting-line theory should be applied to additiomsl
svept wing cases, in order to fwrther cvalumte its sceursey and dependabiijty.

Should the theory comtimne to show good aceurscy in flutter speed
prediction, the msthod should be routinized for desigm office use.

b) The various aspects of the double-1lifting-line theary should
be further examined, and calculstioms for swept vings should be carried omt.

¢) ©hen dependable msasurements become availsble of the spanwise
distribution of 1ift and pitching moment on oecillating wings, these results
should be compared with the predictions of the single- and double-1ifting-
line theories. Such comparisons vill permit direct evaluation of these

theories, and may also point out the directiocns to be taken toward improved
aerodymamic treatments.
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P =L ov. & veg - Teva2n - v) (1.2

vyew, = 2—37— (1.3)

Vhere C;, 1s the local 1ift-coefficlent-slope of the wing, I' 1s the in-

tmit.yorthmw, wyg nthcu&w.dﬂw-ﬂonﬂnmut
the root, L n&mmnmmmnm P, and

/25 ¥V Dbave the cbvious definitioas.
Nov, in line with Bg. (I.1), sssume timt

@
c‘k AR 4
— . R K

2y MRa2 (4 TE

Bgs. (I-2)-(I.h) can be considered as three equations in the three unknowns
", T, c".c » sol their solution leads to the result

- :
-7'— alrae (=5) ‘l

A
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X o tHesseruas ROV assumes that the origimal wing is rectanguiar, s0 ;
that AR = 8/ , and hence ,

- 2.2 (1.6)
. 8 2

' Bote that if the original ving were takes as elliptie, them Bg. (I.5) would
: leed to

T

2.2 1.7)
8 2%

It is of further isterest to mote that if the comiition of the same 1lift per
dtwh@“”&nﬁﬁmdﬁwwmtmmm
and horseshoe vortex, then it can be shown thet, for all wiags,

PEET SN0 T )~ S——

ad 8
I e ()

2

E Wasesrsan, however, constructs hir system om the basis of Bg. (X.6),
presuning & rectaagnlar wing.

d) Stap b - Recourss 1s BOV mma: *; Jome of the results derived
i3 other treatmsats of the seps prodlss. Nor exssple, the work of Reissner
(Refs. 5, 6), wkich follows a more rigorous line of ressoaisg, may be esployed.
, Ia the present stady, the work of Beissmer sad of Biot and Bositmlein (Ref. 1¥)
is utilised for the step to be descrided here.

& ko

a with cirenlation distributios eor-
t0 the horseshoe vortex of wiform intensity cosstzusted in
esither the Rejssaer or the Biot and Bosimleia theory is used to derive sn
64»”;3 whick reyresents the behavior of the three-dimemsiomsl wing. For

sseh ving sspest-ratio asd for each redused frequency, an spprogriate (F + 10)
value can be computed vithout difficulty. Ky a detallied discussion of hov this
; 1s accomplished, see Wassermas's origiml treatment, Bef. 1.

R

[YV)

- Tables of (F + 3G)3 vs. AR vs. reduced frequeasy can now be pre-
. pared for easy reference, so that for values of “effective ¢t ratio”
-4 , umm,ms@géﬁe lE:EEmur_m_g'!mm.
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e) Step 5 - Metwrning now to the A% Adistribution determined
along the wing spen in Step 2, and for esch reduced frequency of imterest,
the spamwise distridutiom of (F + 10)3 is mov determined by mesas of the
tables of Step b.

The (7 + J0)3 distribution so cbtained is then used ia place of

e Tweodorsen C{k) fumction in the equatioms for the two-dimemsiomal air
foress. The air foroes computed on this besis are used in the fimttar analysis.

£) 8tep 6 - It 1s evident that itle preceding method for deriving
(r + X); , and hence the air forces, is straightforvard vhen the ratio ¥ /¥
is lees one. Nowever, it is also possible to obtain values of the ¥ /¥
ratio wkich are greater tham one. Equation {I.h) then leads to magative
AR wvalwes, vhich are obvicesly not admissible.

Under thid cirewmstance, Uassermin suggests that the rstio ¥ /7
be talws as the true ratio of circulation for the oscillatory case.

Another @ifficulty in the method arises vhen ¥ 1is serc. In this
evest, calculate ¥ /¥, , shere ¥y 1 the two-dimensional eiremlation at
nob-umrmmtin. Then, (x/b)/(trlbr) is taken as the ratio of
mmmwmemmmmnmmmmtmn, »
being the local semi-chord in each case.

It is to be noted that a separate air force determimatios is required
for esth ving mods of interest and for esch reduced freguency. Nowever, once
the stesdy-state cireulation distribations are calculated, the resminder of the
process becomes sisple and direct, and does not involve any laboriows solutioms
of sets of simultansous equations, as in the case of the more rigorous methods
of calemlation. From the point of viev of desiga-office practice, the Wasser-
man procedurs 13 an scceptshle one. However, waless it can be comelusively
demonstrated that very superior accurscy can be achieved through their use, the
wre rigrous methods mst be classed as imprectic:l becsuse of the cousidersble
labor they entail.
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AALCULATION OF YHE AERODYSANIC INFLIENCE COKPYICIENTS wy
FOR TEE QEE- AND YWO-LIPYING LU THEORIES

1. By using the techmigues described in Ref. §, it cam be. showm

that the dowrmash induced by a rectaagular, cescillating, horseshoe vortsx
vith bound circulstica Tel¥t emd spam 27 1is glven by

w0t L[5, + 5] IO (11.)

where W, dsscribes the imduction dus tc the concentrated bowsd wortex fila-

ment, and ¥, deseribes the dcwnwesh arising from the wale trailing de- !
hind the bound vortex.

Using the coordisate system shown ia Pig. 1b, the valme of &
at a point (x, y) can be shown to equal

“-o it 4] e

nx) = [2+ (74 ’)2]1/2
Ry(x) = [xz +(7- 7)2]1/2

The value of ¥y s fouwnd to be, for |,|<7,

bl

TR
a1 {efitn o 1] + 2 [x7- 1] + K7+ 7}

+x[K7 - ,)]}] (1.3)
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Fig. 14 - Schematic Diagram of Vorticity Associated With a
Rectazgular, Oscillating, Norseshoe Vortex. B
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wile ror |y|> 7,

v = ‘—L[—zz—- =, X * x_
-4 (7+ Imy(x) (7 - ¥)Ry(x)
. ih'm{![k(y o] - 2ty -7)] e[ty +7)] ;

axy -7 )}] (z.4)

where P[kg] is the complete Cicala fuaction

- [ L BTG

Alxs)

and E[kY] 1s s related inccmplete fuactios

(k) = /o T I W _l_L_'iLW aA (11.6)
Y 2 A(xy)

2. The manner of arriving at the ssrodymanic influence coefficients
W5 , for the singls and dowble lifting lims theories 1s nov evidest from the
discumsion given in the boly of the report, and from the expressioms Rgs.
.1)-§.h).

After mach maipulation, the coeffisient W., csl be east into the
followiag form which is cowvenient for eslculation:

One-difting-Line Pasory




Bg») = -“"[{b(l%’)l/ 2, %ilo) - A(o,t)}
(11.20)

+1 {b /2 + orylo) l(.,b)}

macthen, e

e
. o,
Lime | 4;.‘;,
4 _ . (‘) ' \
R N (ﬂ)(_l_. 1.1 ),
'rl ~'? n 1l /‘2 val '1 10‘1 v-1 82‘1"25
.}_r o +o°ﬁ1'1{1-_l & -!-D(l]. )1
’{m et 2 Nex) Ky
1] & -i», », & 1ES
"1[ ﬁ;}-’. { T2 u(h j}‘%"éj’}. J
(11.8)
The following definitions pertain.
_knkl W
»
la:/? H '-y/?
ek 5Ky (x2.9)
' g ~ v/l ; ‘2"”"1‘
and § 1s the distance from the bound vortex mid-spam rearward to the trailing
edgs of the wing, divided by the local semi-chord. As shown in the maim text,
for the siagle-liftiug-line spproach & = 3/2 while for the doeble-liftisg-
line-theory, § takes om the walmes 7/b and 3/A eorresponding to the for-
vard and resrwerd lifting-lines, respestively.
bmmwmnm-{),us)u pg; %) amt
D (sp,b5) - Bropping the subseripts, it can be shown tha




= () + 17y(v) > (1)

60) =) +1g D>+ 7 -1
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In the latter ogumtios, J 1s the well-knowa Exlerian comstamt 0.5TT2 *°°° .
Pimally,

o
A(sb.b)-f {(1-».)) VZ o2 /z}aa

°
(1z.22)

up,u)-['{.mﬂ??/a} ak

It is recoguized that F(b} is the complet: Cieals fumction while
the lategrals in (I1.12) are related to the iaccmplete Gicals fumetion. Values
of R(d) , Fr(v) end O(v) have been tsbulsted by Luke sad Wford (Ref. 15).
The istegrals Al{gh,b) sod B{gb,b) are tabulated ia a repart by Dengler,
Golaad and Luke (Bef. 3§). More receatly, sm extensive tabls of P(b) heas been
prepared by the Narvard Computations Leborstory (Ref. 17). It is waderstood
that they have also tabslated the integrals in (X.12) (or related omes).

Note that the fumetion B{g,b) contains mo singularitiss. It is
8 two-parameter family. In viev of the showe tables, this fumctios eould be
tabulsated once aad for all, so that for exy wing configurstios cemstruction
of the downwash eoefficissts would be an essy metter. It does moi sppear
feasible to construct charts for the hracksted portica of W, direstly ss
this is a three-parameter fasily.
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hmm,nmummm‘mmm
the ealenlation of the spanwise lift sad moment distributioms for oscilleting
finite span vings using the single-lifting-lime theory. The steps are as
folloms:

1. Beplace the ving by & system of discrete horseshoe vortices as
showa 1o Pig. 2. nmmtmoruunm,m-nm&—hmotaz
w, v, b, g, ete. (See p. 59)

2. Chooee k .

3. Compate ¥., as given by Bg. (II.9) for the valmes of r and
8 determined im Step 1. Note that subscript r refers to mmber of ving
vortex vhile subscript s refers to positios om the three-guarter chord line,

%, For the wing mode of interest, compute the total geomstric down-
wash at the required three-quarter chord lime stations. Note that for swept
wings, in additios to comtributions due to the wing bending sad torsi o mode
shapes, & further contribdbution arises which is proportional to the spanvise
cheage of the wing bending molds shape.

S. PFor sach cosponent of the geometric dowowash derived in Step b,
dotermine the = walues of Tp as defined by the set of = aimltanecus
equaticns, Bgs. (2.3).

6. Compute the spamvise distributiom of circulaiory 11ft es given
by Bg. (2.5). Note that the present theory sssumes that resultast 1ift of esech
wing ssction acts st the guarter chord. Thus the moment coefficlests are the
sams a8 their two-&imensiomal sounterparts.
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- 7. Cospute mm-sirculatory 1ift asd moment distribetion along S
: the viag for each mode shape of interest employing two-dimsmsiomsl strip P

theory. Note that the 1ift asts at the quarter ehord. '.
' 8. Coshine the circulatory ead mom-eirculstory 117t asd moment
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